业界动态
常见的21种数据挖掘工具
2024-11-10 08:58

数据挖掘(Data mining)是通过智能的方法,从数据中提取实用信息,对数据予以解释,发现数据的模式与关系,以及预测趋势和行为的过程。该过程往往会涉及到诸如:数据清理、机器学习、人工智能、数据分析、数据库系统、以及回归、聚类等信息统计技术。显然,数据集越大、越复杂,我们就能够越轻松地通过自动化分析工具,越快地找到越相关的意义。而通过识别和理解有意义的数据,用户企业也就可以做出各种明智的决策,并实现其目标。

常见的21种数据挖掘工具

数据挖掘的基本步骤

我们可以将数据挖掘运用到诸如:市场细分、趋势分析、欺诈检测、数据库营销、信用风险管理、教育、以及财务分析等多种场景中。虽然各个组织使用的方法可能有所不同,但是总的说来,数据挖掘过程通常包括以下五个步骤:

根据既定的目标,确定业务需求。

识别数据源,以确定需要分析哪些数据点。

选择并应用建模技术。

评估模型,以确保其符合既定的目标。

报告数据挖掘的结果,或继续执行可重复的数据挖掘过程。

数据挖掘与数据仓库之间的区别

数据仓库是收集和管理数据的过程。它将各种不同来源的数据存储到一个存储库中,以供运营业务系统(如CRM系统)使用。该过程通常发生在数据挖掘之前,其优势包括:改进源系统中的数据质量,保护数据免受源系统更新的影响,具备集成多个数据源和数据优化的能力。

数据挖掘工具

如前所述,数据挖掘的过程会涉及到各种技术,其中包括流行的:回归分析(预测性)、关联规则发现(描述性)、聚类(描述性)和分类(预测性)。目前,随着市场的成熟、软件的升级、以及技术的迭代,我们可以选用带有不同算法的工具,来进行数据分析与挖掘。下面,我将和您从如下7个分类,综合介绍与比较21种常见的工具。

用于统计分析的集成类数据挖掘工具

开源的数据挖掘方案

大数据类数据挖掘工具

小型数据挖掘方案

用于云端数据挖掘的方案

使用神经网络的数据挖掘工具

用于数据可视化的数据挖掘工具

当然,其中的一些工具可能会横跨多个类别。例如,尽管Amazon EMR属于云端解决方案,但它同时也是处理大数据的绝佳工具。因此,我们尽量根据每种工具的最突出特性,进行分类。

在实际介绍各类工具之前,我们首先来简要了解两种最流行的数据科学编程语言:R和Python之间的区别。

R与Python

从源头上说,R是在考虑统计分析的前提下开发的;而Python则提供了一种更为通用的数据科学方法。从使用目的来看,R更专注于数据分析,并提供可灵活地使用的代码库。相反,Python的主要目标是部署到生产环境,它允许用户从头开始创建模型。就具体使用方法而言,R通常被集成到本地运行,而Python则能够与应用程序相集成。因此,尽管它们之间存在着差异,但是两种语言都可以处理大量的数据,并提供大量的代码库。

1. IBM SPSS

SPSS(Statistical Package for the Social Sciences)是目前最流行的统计软件平台之一。自2015年开始提供统计产品和服务方案以来,该软件的各种高级功被广泛地运用于学习算法、统计分析(包括描述性回归、聚类等)、文本分析、以及与大数据集成等场景中。同时,SPPS允许用户通过各种专业性的扩展,运用Python和R来改进其SPSS语法。

3. SAS

SAS(Statistical Analysis System)是数据与文本挖掘(tex mining)及优化的合适选择。它能够根据组织的需求和目标,提供了多种分析技术和方法功能。目前,它能够提供描述性建模(有助于对客户进行分类和描述)、预测性建模(便于预测未知结果)和解析性建模(用于解析,过滤和转换诸如电子邮件、注释字段、书籍等非结构化数据)。此外,其分布式内存处理架构,还具有高度的可扩展性。

4. Oracle Data Mining

Oracle Data Mining(ODB)是Oracle Advanced Analytics的一部分。该数据挖掘工具提供了出色的数据预测算法,可用于分类、回归、聚类、关联、属性重要性判断、以及其他专业分析。此外,ODB也可以使用SQL、PL/SQL、R和Java等接口,来检索有价值的数据见解,并予以准确的预测。

5.KNIME

于2006年首发的开源软件KNIME(Konstanz Information Miner),如今已被广泛地应用在银行、生命科学、出版和咨询等行业的数据科学和机器学习领域。同时,它提供本地和云端连接器,以实现不同环境之间数据的迁移。虽然它是用Java实现的,但是KNIME提供了各种节点,以方便用户在Ruby、Python和R中运行它。

7.Orange

Orange是基于Python的开源式数据挖掘软件。当然,除了提供基本的数据挖掘功能,Orange也支持可用于数据建模、回归、聚类、预处理等领域的机器学习算法。同时,Orange还提供了可视化的编程环境,以及方便用户拖放组件与链接的能力。

从概念上说,大数据既可以是结构化的,也可以是非结构化、或半结构化的。它通常涵盖了五个V的特性,即:体量(volume,可能达到TB或PB级)、多样性(variety)、速度(velocity)、准确性(veracity)和价值(value)。鉴于其复杂性,我们对于海量数据的存储,模式的发现,以及趋势的预测等,都很难在一台计算机上处理与实现,因此需要用到分布式的数据挖掘工具。

8. Apache Spark

Apache Spark凭借着其处理大数据的易用性与高性能,而倍受欢迎。它具有针对Java、Python(PySpark)、R(SparkR)、SQL、Scala等多种接口,能够提供80多个高级运算符,以方便用户更快地编写出代码。另外,Apache Spark也提供了针对SQL and Dataframes、Spark Streaming、GrpahX和MLlib的代码库,以实现快速的数据处理和数据流平台。

10.Qlik

Qlik是一个能够运用可扩展、且灵活的方法,去处理数据分析和挖掘的平台。它具有易用的拖放界面,并能够即时响应用户的修改和交互。为了支持多个数据源,Qlik通过各种连接器、扩展、内置应用、以及API集,实现与各种外部应用格式的无缝集成。同时,它也是集中式共享分析的绝佳工具。

11. Scikit-learn

作为一款可用于Python机器学习的免费软件工具,Scikit-learn能够提供出色的数据分析和挖掘功能。它具有诸如分类、回归、聚类、预处理、模型选择、以及降维等多种功能。

13.Pandas(Python)

Pandas也是利用Python进行数据挖掘的“一把好手”。由它提供的代码库既可以被用来进行数据分析,又可以管理目标系统的数据结构。

14.H3O

作为一种开源的数据挖掘软件,H3O可以被用来分析存储在云端架构里的数据。虽然是由R语言编写,但是该工具不但能与Python兼容,而且可以用于构建各种模型。此外,得益于Java的语言支持,H3O能够被快速、轻松地部署到生产环境中。

通过实施云端数据挖掘技术,用户可以从虚拟的集成数据仓库中,检索到重要的信息,进而降低存储和基础架构的成本。

15.Amazon EMR

作为处理大数据的云端解决方案,Amazon EMR不仅可以被用于数据挖掘,还可以执行诸如:Web索引、日志文件分析、财务分析、机器学习等数据科学工作。该平台提供了包括Apache Spark和Apache Flink在内的各种开源方案,并且能够通过自动调整集群之类的任务,来提高大数据环境的可扩展性。

17. Google AI Platform

与Amazon EMR和Azure ML类似,基于云端的Google AI Platform也能够提供各种机器学习栈。Google AI Platform包括了各种数据库、机器学习库、以及其他工具。用户可以在云端使用它们,以执行数据挖掘和其他数据科学类任务。

神经网络主要是以人脑处理信息的方式,去处理数据。换句话说,由于我们的大脑有着数百万个处理外部信息,并随之产生输出的神经元,因此神经网络可以遵循此类原理,通过将原始数据转换为彼此相关的信息,以实现数据挖掘的目的。

18. PyTorch

Pytorch既是一个Python包,也是一个基于Torch库的深度学习框架。它最初是由Facebook的AI研究实验室(FAIR)开发的,属于深层的神经网络类数据科学工具。用户可以通过:加载数据,预处理数据,定义模型,执行训练和评估,这样的数据挖掘步骤,通过Pytorch对整个神经网络进行编程。此外,借助强大的GPU加速能力,Torch可以实现快速的阵列计算。截至2020年9月,torch的R生态系统(https://torch.mlverse.org/)中已包含有torch、torchvision、torchaudio、以及其他扩展。

数据可视化是对从数据挖掘过程中提取的信息,予以图形化表示。此类工具能够让用户通过图形、图表、映射图、以及其他可视化元素,直观地了解数据的趋势、模型和异常值。

20. Matplotlib

Matplotlib是使用Python进行数据可视化的出色工具库。它允许用户利用交互式的图形,来创建诸如:直方图、散点图、3D图等质量图表。而且这些图表都可以从样式、轴属性、字体等方面被自定义。

    以上就是本篇文章【常见的21种数据挖掘工具】的全部内容了,欢迎阅览 ! 文章地址:http://sicmodule.kub2b.com/news/299.html 
     资讯      企业新闻      行情      企业黄页      同类资讯      首页      网站地图      返回首页 企库往资讯移动站 http://changmeillh.kub2b.com/ , 查看更多   
最新新闻
APP如何提升日活?
这次我们来说怎么提升日活。根据分解,日活提升=增加新用户+新用户留存提升+老用户促活+流失用户召回。上篇文字我们说了增加新用
一起少女失踪案背后的非法拘禁团伙。
点击上方“Python爬虫与数据挖掘”,进行关注回复“书籍”即可获赠Python从入门到进阶共10本电子书今日鸡汤青山遮不住
华为手机抖音创作者服务指南:全方位解答创作疑问与技巧提升
华为手机抖音创作者服务指南:全方位解答创作疑问与技巧提升抖音作为当前更受欢迎的短视频平台吸引了众多创作者纷纷入驻。在创作
SEO天天说,到底什么是关键词(字)?
内容编辑应该重点注意内容优化、链接优化、关键字优化,今天主要来说说运营不可不掌握的基础技能SEO。一起来了解下什么是关键词
2019国考行测备考指导:排列组合中的四种常用方法进入阅读模式
2019国考行测备考指导:排列组合中的四种常用方法。更多2019国家公务员考试备考资料,欢迎访问中公国家公务员考试网。2019国考笔
大数据Hive Join连接查询
Hive join优化指的是通过调整Hive查询语句或者调整Hive配置参数来提高Hive join的性能。下面列举一些常见的Hive join优化方法:1
小黄 片怎样看才能发挥奇妙作用?研究发现——
Hello大家早上好,我是阿月。开始今天的科普之前,想问大家一个比较隐私的问题:你会看色情片吗?(方便的话可以投投票~)虽然部
90后的老叔叔老阿姨连美人鱼尾都没有,你还谈什么养生 小话题
大家好,我是90后老叔叔,我是朋克养生家族的一员,我为朋克养生带盐。立冬到了,意味着进入了寒冷的冬天,而养生保暖又一次的进
商丘师范学院智慧校园建设风采
  商丘师范学院智慧校园建设发展遵照“统筹规划、分步实施”“整体推进、突出重点”“需求驱动、务求实效”“立足高端、跨越发
丁真的笑容背后,是他们1000多个日夜的无声守护
近日藏族理塘小伙丁真因为一则短视频火了起来11月12日“藏族的康巴汉子有多帅”登上热搜收获4亿阅读量自那天以后丁真就成了微博
本企业新闻